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Outline of Fan, Fan, Han and L. (2022b)

A motivating example

m Flexible network inference

m SIMPLE for mixed membership models

m SIMPLE for degree-corrected mixed membership models

m Numerical examples
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A Networked World and A Simple Question

m How to fest whether a pair of social media users or text
documents belong to the same community?
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A Motivating Example
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m A university karate club network data (zachary, 1977) for 34 members
(Girvan and Newman, 2002)

m Edge meaning two members spent much time together outside
club meetings

m At some point members split into two communities (one led by H
and the other by A)
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A Network with Non-Overlapping Communities
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m Well understood network structure based on stochastic block
model with non-overlapping communities

m Nodes 7, 8 belonging to one community (/) and nodes 9, 10, 27
belonging to the other (A)
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P-Values?

7 8 9 10 27

7 1.0000 0.1278 0.0012 0.0685 0.0145
0.1278 1.0000 0.0026 0.0052 0.0000

9 0.0012 0.0026 1.0000 0.3308 0.0540
10 0.0685 0.0052 0.3308 1.0000 0.4155
27 0.0145 0.0000 0.0540 0.4155 1.0000

m Desired to test whether each pair of nodes belong to the same
community

m Not only a Y/N but also precise p-value for network inference
justifying significance of community labeling

m How?
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A Network with Overlapping Communities

m All models are wrong, but some are more useful than others
(George Box, 1979)

m Model misspecification has important implications (white, 1982; cute,
Samworth and Stewart, 2010; L. and Liu, 2014; Buhlmann and van de Geer, 2015; )

m What if switching to stochastic block model with overlapping
communities (various network structures)
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P-Values?

m Each node now equipped with a membership probability vector
(mixed membership)

m A different test needed?

m Different network models resulting in different testing results?
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A Surprise

7 8 9 10 27

7 1.0000 0.1278 0.0012 0.0685 0.0145
8 0.1278 1.0000 0.0026 0.0052 0.0000
9 0.0012 0.0026 1.0000 0.3308 0.0540
10 0.0685 0.0052 0.3308 1.0000 0.4155
27 0.0145 0.0000 0.0540 0.4155 1.0000

m The world of network inference can be much simpler than
imagined (same test)

m How?

Jinchi Lv, USC Marshall — 9/52



Questions of Interest

m How to design a tool for flexible network inference with precise
p-values on testing whether two nodes share same membership
profiles (general network models with overlapping
communities)?

m How to allow for degree heterogeneity for more flexible network
inference?

m How to develop a general framework of asymptotic theory on the
size and power of the new tests?
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Flexible Network Inference
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Model Setting

m Consider a network with n nodes {1,--- , n} and adjacency
matrix X = (x;) € R™" representing connectivity structure of
network with x; = 1 for link and 0 for no link (Bhattacharyya and Bickel, 2016;
Abbe, 2017; Le, Levina and Vershynin, 2018; Fan, Fan, Han and L., 2022a; )

m Assume adjacency matrix can be written generally as
X=H+W

m H = (hy) € R™" is deterministic mean matrix of low rank K

m Latent network structure encoded in the eigen-structure of mean
matrix H
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Continued

m W= (w;) € R™" is symmetric random noise matrix with
independent diagonal and upper diagonal entries satisfying
EW,'/‘ =0and maxi<j,j<n |WU| <A1

m Noise matrix W known as generalized Wigner matrix
m Links x;’s independent Bernoulli random variables with means 5;

m For the case of without self loops, we observe
X — diag(X) = H + (W — diag(X))

m Our framework applicable to both cases
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Community Structure

m Assume network can be decomposed into K communities
Gi,--, Ck

m Each node / has probability vector
T = (71',‘(1), e 77\',‘(K))T € RX with 71'/(/() S [O, 1],
SK, mi(k) =1, and
P(node i belongs to community Cx) = mi(k)

m Assume number of communities K is finite but unknown

Jinchi Lv. USC Marshall — 14/52



Hypothesis Testing

m For any given pair of nodes (i, j), our goal is to infer whether
they share same community identity (membership probability
vector) with quantified uncertainty level from observed
adjacency matrix X

m Interested in testing hypothesis

Ho:ﬂ',':ﬂ'j VS. H1:7T,'757Tj

m To make problem more explicit we first exploit mixed
membership model
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SIMPLE for Mixed Membership Models
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Mixed Membership Model

m For now consider mixed membership model without degree
heterogeneity (airoldi, Biei, Fienberg and Xing, 2008)

H=onPn’

m Scalar 6 > 0 allowed to convergeto 0 as n — oo

m N=(my, - ,m,)" € R™K is matrix of membership probability
vectors

m P = (py) € Rf¥*K is nonsingular irreducible symmetric matrix
with pyg € [0, 1]

m Assume number of communities K is finite but unknown

m Including SBM (with 7; € {eq,--- ,ex}) as a special case
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Population and Empirical Eigenstructures

m Denote by H = VDV’ eigendecomposition of mean matrix

m D =diag(d,- -, dk) with |di| > --- > |dk| > 0 is matrix of
nonzero eigenvalues of descending order in magnitude

m V=(vyq,---,vk) € R™K s orthonormal matrix of
corresponding eigenvectors

m Denote by dy,--- , d, eigenvalues of X and vy, --- ,V,
corresponding eigenvectors

m Without loss of generality assume \81| > > |an| and
denote by V = (Vy,--- ,Vk) € R™K

m Asymptotic distributions of spiked eigenvectors and eigenvalues
for random matrices with Wigner-type noises (ran, Fan, Han and L, 2022a)
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An Ideal Test Statistic

m First consider the case of known K

m By a simple permutation argument,
under Hp : 7; = m;, we have V(i) = V())

with ith and jth rows viewed as column vectors

m Motivated by this we consider following ideal test statistic
Ty = (V(i) = Vo) =7 (V() ~ V()
m X; = cov((e; —e;)"WVD~") with e; € R" unit vector

m Need some basic conditions to derive asymptotic distributions of
Tjj under Hy and Hj
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Technical Conditions

m Condition 1. Assume that mini<j<x_1 |[‘j‘ﬂ‘ > 1+ ¢y for some

constant ¢g > 0 and o, — 0o as N — oo with
2 _ U 2
ap =max; ;i Ew;

m Condition 2. There exist some small constants 0 < ¢y, ¢ < 1
such that Ax(N"M) > c1n, Ak(P) > ¢, and 6 > n~% with ()
standing for jth largest eigenvalue or singular value

m Condition 3. Assume that all eigenvalues of n*4X, are bounded
away from 0 and oo
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Interpretations

m «, measures the noise level
m Condition 1 allows for sparse network model

m Condition 2 ensures that
a2<nh, di~nf, k=1,.- K

m Condition 2 also entails that average node degree is roughly of
order nf > n'~¢
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Asymptotic Distributions

Theorem 1

a). Under Conditions 1-3 and null hypothesis Hy, it holds that
Ti -5 x% asn— oo

b). Under Conditions 1—2 and alternative hypothesis Hi, if /nf||m; —
;|| — oo then with asymptotic probability one,

T,‘/—)OO.

If in addition Condition 3 holds, |7 — m;|| ~ \/% and (V(i) —
V() =71 (V(i) = V(j)) — p with u some constant, then

d
Ti = xk(w)
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Practical Test Statistic

m |deal test statistic T; not directly applicable due to unknown
population quantities K and covariance matrix X4

m Consider practical test statistic ?,»,- by replacing K and X4 in Tj
with K and S, respectively

Theorem 2
Assume that

P(K =K)=1-o0(1) and nP0||S; — 1|2 = 0,(1).

Then the same results as in Theorem 1 continue to hold for ?,-,- under
the same conditions

Question: How to estimate K and X1 ?
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Estimation of Unknown Parameters

m A simple thresholding estimator for estimating K:
N N N n
K=4#1{d: d”>201(logn)ymax» Xj,i=1,..n
I
j=1

Proposition 1
The (a, b)th entry of matrix X1 takes the form

ail XX vahveln) + oflvat) - va(hvel) - ve(i)]

tefij} 1g{ij}

m A plug-in estimator of X4 can be constructed

m Vv, and d; can be estimated by v, and aa, respectively

m Estimation of o2, is a bit more complicated...
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An Iterative Algorithm for Estimating ng

m Recall 02, = E[w2,

= With K, the naive estimator Wg_’ab with
W, = (Wo.a0) = X — Zfﬂ akaV[ is not accurate enough
m We propose an iterative estimation procedure
» Calculate the initial estimator Wy

= With W, update the estimator of dy as

dk B
m Update the estimator of W as
W = (W) = X — 3K, dV,V]. Estimate 02, as 52, = w2,

~ 1 V] diag(W2)V,\ —1
dk:<—+ x diag(Wg) k)

m The above iterative procedure is motivated from high-order
asymptotic expansion of sample eigenvalue o, . ..



Consistency of estimated parameters

Proposition 2
Under Conditions 1-3, we have P(K = K) =1 — o(1) and
n?0||S1 — 4|2 = 0p(1)

Corollary 1
The asymptotic size of the rejection region

T 2
{TU 2 XRJ—(Y}

is o and the asymptotic power is one as n — o

m Note that the rejection region is pivotal to unknown parameters
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SIMPLE for Degree-Corrected Mixed Membership Models
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Degree Heterogeneity

m Now consider the more general scenario of degree
heterogeneity
H=enpPn’e

(Zhang, Levina and Zhu, 2014; Jin, Ke and Luo, 2017; )

m O =diag(fy,--- ,0,) with §; > 0 is degree heterogeneity matrix

The previous test T is no longer applicable because of degree
heterogeneity

We build a new test using the ratio statistic (uin, 2015)
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A Ratio Statistic

m Consider the following componentwise ratio to correct the
degree heterogeneity

)

Vel) 4 _icn2<k<k (1)

b= 1(/)

<

with 0/0 defined as 1

m Under the null hypothesis, due to the exchangeability of nodes i
and j

vli) _Vll) i @)

= We build our test by comparing Y; = (Y(i,2),--, Y(i,K))T with
Y =(Y(,2), -, Y(,K)T
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An Ideal Test under Degree Heterogeneity

m For now assume that K is known

We propose the test statistic to test Hp : m; = =r;

Gj=(Yi-Y)TE (Y - Y))

¥, = cov(f) withf = (f,--- , f)7 and

o _e/Wy e/Wvi v (e/Wvy  Vvi(j)e/ Wy,
T () () tv2 (i) tv2 ()

2, is asymptotic covariance matrix of Y; — Y;
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Conditions

m Condition 4. There exist some constants ¢, ¢; € (0,1) and
constant ¢4 > 0 such that miny<x<k |[Nk| > €21, Omax < C4bmin,
and 62, > n-%

m Condition 5. Matrix P = (py) is positive definite, irreducible, and
has unit diagonal entries. Moreover
I']mimngK7 t=ij Var(etTva) — 0

2

min

m Condition 6. It holds that all the eigenvalues of né¢
bounded away from 0 and oo

cov(f) are

m Condition 4 requires that there are enough pure nodes from
each community and degree heterogeneity cannot be too
extreme

m Degree density measured by #2. (converging to zero)

min
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Asymptotic Distributions

Theorem 3
a). Under Conditions 1 and 4—6 and null hypothesis Hy, it holds that
Gj -& \%_ 4 asn— oo

b). Under Conditions 1 and 4—6 and alternative hypothesis H;, if
deo(wim] +7w]) > 2, then with asymptotic probability one,

ne2. ’
min

G,‘j—)OO
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Practical Test Statistic

m |deal test statistic G is not directly applicable due to unknown
population quantities K and covariance matrix X,

m Similarly, consider practical test statistic CA;,',- by replacing K and
3, in G; with K and S, respectively

Theorem 4
Assume that

P(K = K)=1-0(1) and né?;,[|Sz — X2|l2 = 0,(1).

Then the same results as in Theorem 3 continue to hold for a‘,-,- under
the same conditions
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Estimation of Unknown Parameters

m We use the same thresholding estimator to estimate K

Proposition 3
The (a, b)th entry of matrix X, takes the form

o [t1va+1(l) ) va+1(i)v1(/)} [t1vb+1(/) _ Vbﬂ(")‘“(’)}

tar1V1 (/) vy ()2 th1V1(/) vi(i)?

tVart () Vart (OVi() | [tVor1 () Vo1 ()V1(/)
+, 12;75 K [fa+1V1 ) vi(/)? } [fb+1V1 () vi(j)? ]
1 o2 {ﬁvaﬂ(]‘) _ Var1(DVi()  tivari(i) | Vay U)V1(i)]

tar 11 (1) vi(i)? tar1v1()) vi(j)?
" [T1Vb+1(f) _ Vot (Vi) Ve () Vb+1(f)V1(f)} }

tor1V1 (1) vi(i)? to1V1()) vi())?
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Continued

m The expansion involves population parameter t,, whose
definition is too complicated to include here

m We have results showing that t, /dx — 1 and f is indeed the
asymptotic mean of d

m A plug-in estimator S, can be constructed for estimating X,

m fx can be estimated by di
m Vv, can be estimated by v,

m 02, can be estimated by one-step estimator 52,

Proposition 4

Under Conditions 1 and 4-6, estimator §2 achieves the desired
estimation accuracy, i.e.,

n62,,11S2 — X2 = 0p(1)

min
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Rejection Region

Corollary 2
The asymptotic size of the rejection region

~ 2
{GI/ Z ka‘ljlf(y}

is a and the asymptotic power is one as n — oo

m The above rejection region is pivotal
[ (AB,',- can be used with or without degree heterogeneity

m Due to the ratio 7’,-, has better practical performance without
degree heterogeneity
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Numerical Examples
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Simulation Setting

n € {1500,3000} and K = 3 with significance level 0.05
m For mixed membership model, § € {0.2,0.3,--- ,0.9}

m For degree corrected mixed membership model,
07" ~ Ulr~',2r "] with r? € {0.2,0.3,---,0.9}

m X, and X, are estimated from data
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Simulation Results

Table 1: The size and power of test statistics ZA)] and @j when the true value of K is used.
The nominal level is 0.05 and sample size is n = 1500.

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model 1 | Size 0.058 0.046 0.06 0.05 0.05 0.058 0.036 0.05

Power 0.734 0.936 0.986 0.998 1 1 1 1

r? 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model 2 | Size 0.076 0.062 0.072 0.062 0.074 0.046 0.044 0.056

Power 0.426 0.562 0.696 0.77 0.89 093 0.952 0.976
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Continued

Table 2: The size and power of test statistics i‘j and éij when the true value of K is used.
The nominal level is 0.05 and sample size is n = 3000.

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model 1 | Size  0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062
Power 0.936 0.994 1 1 1 1 1 1
r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model 2 | Size  0.082 0.06 0.062 0.058 0.062 0.066 0.064 0.06
Power 0.67 0.842 0.918 0972 0.99 1 1 1
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Continued
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Figure 1: Left: the histogram of test statistic ﬁj under null hypothesis with known K when
6 = 0.9. Blue curve is the density function of x3. Right: the histogram of test statistic éij
under null hypothesis with known K when 72 = 0.9. Blue curve is the density function of
X% Here sample size n = 3000.
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Continued

Table 3: Estimation accuracy of K using the thresholding rule (27)

0 or 12 02 03 04 05 06 0.7 08 0.9
Modell |P(K=K) 1 1 1 1 1 1 1

PK<K) 1 1 1 1 1 1 1 1
Model2 | P(K=K) 0 0 0 1 1 1 1 1

PK<K) 1 1 1 1 1 1 1 1
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Continued

Table 4: The size and power of test statistics ZA"U and aij when the estimated value of K is
used. The nominal level is 0.05 and sample size is n = 3000.

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model 1 | Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

r? 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model 2 | Size 0.054 0.058 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.074 0.042 0918 0.972 0.99 1 1 1
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U.S. Political Data

m 105 political books sold online in 2004 (V. Krebs, source:
http://www.orgnet.com)

m Each book is represented by a node and links between nodes
represent frequent co-purchasing of books by the same buyers

m Books have been assigned manually three labels (conservative,
liberal, and neutral) by M. E. J. Newman

m Such labels may not be extremely accurate

m In fact, as argued in multiple papers (e.g., Koutsourelakis and
Eliassi-Rad (2008)), the mixed membership model may better
suit this data set
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Continued

m We will view the network as having K = 2 communities and treat
neutral ones as having mixed memberships

m Consider the set of 9 books (uinetal., 2017)

Table 7: Political books with labels

Title Label (by Newman) | Node index
Empire Neutral 105
The Future of Freedom | Neutral 104
Rise of the Vulcans Conservative 59
All the Shah’s Men Neutral 29
Bush at War Conservative 78
Plan of Attack Neutral Y
Power Plays Neutral 47
Meant To Be Neutral 19
The Bushes Conservative 50
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Continued

Table 8: P-values based on test statistics ﬁ] The labels provided by Newman are in the
parentheses.

Node No. 105(N) 104(N) 59(C) 29(N) 78(C) 77(N) 47(N) 19(N) 50(C)

(N) 1.0000 0.6766 0.0298 0.3112 0.0248 0.0000 0.0574 0.1013 0.0449
(N) 0.6766 1.0000 0.0261 0.2487 0.0204 0.0000 0.0643 0.1184 0.0407
(C) 0.0298 0.0261 1.0000 0.1546 0.2129 0.0013 0.0326 0.0513 0.9249
(N) 0.3112 0.2487 0.1546 1.0000 0.3206 0.0034 0.0236 0.0497 0.2121
78(C) 0.0248 0.0204 0.2129 0.3206 1.0000 0.0991 0.0042 0.0084 0.2574
(N) 0.0000 0.0000 0.0013 0.0034 0.0991 1.0000 0.0000 0.0000 0.0035
(N) 0.0574 0.0643 0.0326 0.0236 0.0042 0.0000 1.0000 0.9004 0.0834
(N) 0.1013 0.1184 0.0513 0.0497 0.0084 0.0000 0.9004 1.0000 0.1113
(C) 0.0449 0.0407 0.9249 0.2121 0.2574 0.0035 0.0834 0.1113 1.0000
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Continued

Table 9: P-values based on test statistics C:'” The labels provided by Newman are in the
parentheses.

Node No. 105(N) 104(N) 59(C) 29(N) 78(C) 77(N) 47(N) 19(N) 50(C)

(N) 1.0000 0.4403 0.1730 0.4563 0.8307 0.5361 0.0000 0.0000 0.1920
(N) 0.4403 1.0000 0.0773 0.9721 0.3665 0.6972 0.0000 0.0000 0.1144
(C) 01730 0.0773 1.0000 0.0792 0.1337 0.0885 0.0000 0.0000 0.8141
(N) 0.4563 0.9721 0.0792 1.0000 0.4256 0.7624 0.0000 0.0000 0.1153
78(C) 0.8307 0.3665 0.1337 0.4256 1.0000 0.5402 0.0000 0.0000 0.1591
(N) 0.5361 0.6972 0.0885 0.7624 0.5402 1.0000 0.0000 0.0000 0.1294
(N)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.9778 0.0000
(N)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9778 1.0000 0.0000
(C) 0.1920 0.1144 0.8141 0.1153 0.1591 0.1294 0.0000 0.0000 1.0000
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Continued

m Our results based on @,-,- mostly consistent with labels provided
by Newman and also consistent with those in Table 5 of Jin
(2015)

m Books 3 and 9 are both labeled as “conservative” by Newman
and our tests return large p-values between them

m These two books generally have much smaller p-values with
books labeled as “neutral”

m Book 5, which was labeled as “conservative” by Newman,
seems to be more similar to some neutral books
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Continued

m This phenomenon also observed in Jin et al. (2017), who
interpreted this as a result of having a liberal author

m Book 4 has relatively larger p-values with conservative books

m This book has even larger p-values with some other neutral
books such as book 2

m Consistent with results in Jin et al. (2017) who reported that
these two books have very close membership probability vectors
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Visualization
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Figure 3: Left panel: the multidimensional scaling map of the nodes based on test statistics
Gyj. Right panel: the connectivity graph generated from the thresholded p-valuate matrix

based on G;;. The nodes are color coded according to Newman’s labels, with red representing
“conservative,” blue representing “liberal,” and orange representing “neutral.”
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Conclusions

m Suggested a tool for flexible network inference with precise
p-values on testing whether two nodes share same membership
profiles

m Generally applicable to networks with or without overlapping
communities allowing for degree heterogeneity

m Our SIMPLE framework pivotal to unknown parameters including
K

m Provided theoretical justifications of our tests (both size and
power)
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