
High-Dimensional Network Inference (part I)

Jinchi Lv

Data Sciences and Operations Department

Marshall School of Business

University of Southern California

http://faculty.marshall.usc.edu/jinchi-lv

USC Summer School on Uncertainty Quantification (08/09/2024)

Jinchi Lv, USC Marshall – 1/52

http://faculty.marshall.usc.edu/jinchi-lv


Outline of Fan, Fan, Han and L. (2022b)

� A motivating example

� Flexible network inference

� SIMPLE for mixed membership models

� SIMPLE for degree-corrected mixed membership models

� Numerical examples
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A Networked World and A Simple Question

II: A Networked World 
• How to test whether a pair of social media 

users or text documents belong to the same 
community? 
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� How to test whether a pair of social media users or text
documents belong to the same community?
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A Motivating Example
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� A university karate club network data (Zachary, 1977) for 34 members
(Girvan and Newman, 2002)

� Edge meaning two members spent much time together outside
club meetings

� At some point members split into two communities (one led by H
and the other by A)
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A Network with Non-Overlapping Communities
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� Well understood network structure based on stochastic block
model with non-overlapping communities

� Nodes 7, 8 belonging to one community (H) and nodes 9, 10, 27
belonging to the other (A)
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P-Values?
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Figure 3: The plot of the relationships of the Zachary’s Karate Club’s data

Table 6: P-value for Zachary’s Karate Club under model (4)

7 8 9 10 27

7 1.0000 0.1278 0.0012 0.0685 0.0145

8 0.1278 1.0000 0.0026 0.0052 0.0000

9 0.0012 0.0026 1.0000 0.3308 0.0540

10 0.0685 0.0052 0.3308 1.0000 0.4155

27 0.0145 0.0000 0.0540 0.4155 1.0000

14

� Desired to test whether each pair of nodes belong to the same
community

� Not only a Y/N but also precise p-value for network inference
justifying significance of community labeling

� How?
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A Network with Overlapping Communities

� All models are wrong, but some are more useful than others
(George Box, 1979)

� Model misspecification has important implications (White, 1982; Cule,

Samworth and Stewart, 2010; L. and Liu, 2014; Bühlmann and van de Geer, 2015; ...)

� What if switching to stochastic block model with overlapping
communities (various network structures)
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P-Values?

� Each node now equipped with a membership probability vector
(mixed membership)

� A different test needed?

� Different network models resulting in different testing results?
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A Surprise
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Figure 3: The plot of the relationships of the Zachary’s Karate Club’s data

Table 6: P-value for Zachary’s Karate Club under model (4)

7 8 9 10 27

7 1.0000 0.1278 0.0012 0.0685 0.0145

8 0.1278 1.0000 0.0026 0.0052 0.0000

9 0.0012 0.0026 1.0000 0.3308 0.0540

10 0.0685 0.0052 0.3308 1.0000 0.4155

27 0.0145 0.0000 0.0540 0.4155 1.0000

14

� The world of network inference can be much simpler than
imagined (same test)

� How?
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Questions of Interest

� How to design a tool for flexible network inference with precise
p-values on testing whether two nodes share same membership
profiles (general network models with overlapping
communities)?

� How to allow for degree heterogeneity for more flexible network
inference?

� How to develop a general framework of asymptotic theory on the
size and power of the new tests?
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Flexible Network Inference
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Model Setting

� Consider a network with n nodes {1, · · · ,n} and adjacency
matrix X = (xij) ∈ Rn×n representing connectivity structure of
network with xij = 1 for link and 0 for no link (Bhattacharyya and Bickel, 2016;

Abbe, 2017; Le, Levina and Vershynin, 2018; Fan, Fan, Han and L., 2022a; ...)

� Assume adjacency matrix can be written generally as

X = H + W

� H = (hij) ∈ Rn×n is deterministic mean matrix of low rank K

� Latent network structure encoded in the eigen-structure of mean
matrix H
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Continued

� W = (wij) ∈ Rn×n is symmetric random noise matrix with
independent diagonal and upper diagonal entries satisfying
Ewij = 0 and max1≤i,j≤n |wij | ≤ 1

� Noise matrix W known as generalized Wigner matrix

� Links xij ’s independent Bernoulli random variables with means hij

� For the case of without self loops, we observe

X− diag(X) = H + (W− diag(X))

� Our framework applicable to both cases
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Community Structure

� Assume network can be decomposed into K communities
C1, · · · ,CK

� Each node i has probability vector
πi = (πi(1), · · · ,πi(K ))T ∈ RK with πi(k) ∈ [0,1],∑K

k=1 πi(k) = 1, and

P(node i belongs to community Ck ) = πi(k)

� Assume number of communities K is finite but unknown
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Hypothesis Testing

� For any given pair of nodes (i , j), our goal is to infer whether
they share same community identity (membership probability
vector) with quantified uncertainty level from observed
adjacency matrix X

� Interested in testing hypothesis

H0 : πi = πj vs. H1 : πi 6= πj

� To make problem more explicit we first exploit mixed
membership model
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SIMPLE for Mixed Membership Models
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Mixed Membership Model

� For now consider mixed membership model without degree
heterogeneity (Airoldi, Blei, Fienberg and Xing, 2008)

H = θΠPΠT

� Scalar θ > 0 allowed to converge to 0 as n→∞

� Π = (π1, · · · ,πn)
T ∈ Rn×K is matrix of membership probability

vectors

� P = (pkl) ∈ RK×K is nonsingular irreducible symmetric matrix
with pkl ∈ [0,1]

� Assume number of communities K is finite but unknown

� Including SBM (with πi ∈ {e1, · · · ,eK}) as a special case
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Population and Empirical Eigenstructures

� Denote by H = VDVT eigendecomposition of mean matrix

� D = diag(d1, · · · ,dK ) with |d1| ≥ · · · ≥ |dK | > 0 is matrix of
nonzero eigenvalues of descending order in magnitude

� V = (v1, · · · ,vK ) ∈ Rn×K is orthonormal matrix of
corresponding eigenvectors

� Denote by d̂1, · · · , d̂n eigenvalues of X and v̂1, · · · , v̂n
corresponding eigenvectors

� Without loss of generality assume |d̂1| ≥ · · · ≥ |d̂n| and
denote by V̂ = (v̂1, · · · , v̂K ) ∈ Rn×K

� Asymptotic distributions of spiked eigenvectors and eigenvalues
for random matrices with Wigner-type noises (Fan, Fan, Han and L., 2022a)
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An Ideal Test Statistic

� First consider the case of known K

� By a simple permutation argument,

under H0 : πi = πj , we have V(i) = V(j)

with i th and j th rows viewed as column vectors

� Motivated by this we consider following ideal test statistic

Tij = (V̂(i)− V̂(j))TΣ−1
1 (V̂(i)− V̂(j))

� Σ1 = cov((ei − ej)
T WVD−1) with ei ∈ Rn unit vector

� Need some basic conditions to derive asymptotic distributions of
Tij under H0 and H1
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Technical Conditions

� Condition 1. Assume that min1≤i≤K−1
|di |
|di+1| ≥ 1 + c0 for some

constant c0 > 0 and αn →∞ as n→∞ with
α2

n = maxj
∑n

i=1 Ew2
ij

� Condition 2. There exist some small constants 0 < c1, c2 < 1
such that λK (Π

TΠ) ≥ c1n, λK (P) ≥ c1, and θ ≥ n−c2 with λj(·)
standing for j th largest eigenvalue or singular value

� Condition 3. Assume that all eigenvalues of n2θΣ1 are bounded
away from 0 and∞
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Interpretations

� αn measures the noise level

� Condition 1 allows for sparse network model

� Condition 2 ensures that

α2
n ≤ nθ, dk ∼ nθ, k = 1, · · · ,K

� Condition 2 also entails that average node degree is roughly of
order nθ ≥ n1−c2
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Asymptotic Distributions

Theorem 1

a). Under Conditions 1–3 and null hypothesis H0, it holds that

Tij
d−→ χ2

K as n→∞

b). Under Conditions 1–2 and alternative hypothesis H1, if
√

nθ‖πi −
πj‖ → ∞ then with asymptotic probability one,

Tij →∞.

If in addition Condition 3 holds, ‖πi − πj‖ ∼ 1√
nθ

, and (V(i) −
V(j))TΣ−1

1 (V(i)− V(j))→ µ with µ some constant, then

Tij
d−→ χ2

K (µ)
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Practical Test Statistic

� Ideal test statistic Tij not directly applicable due to unknown
population quantities K and covariance matrix Σ1

� Consider practical test statistic T̂ij by replacing K and Σ1 in Tij

with K̂ and Ŝ1, respectively

Theorem 2
Assume that

P(K̂ = K ) = 1− o(1) and n2θ‖Ŝ1 −Σ1‖2 = op(1).

Then the same results as in Theorem 1 continue to hold for T̂ij under
the same conditions

Question: How to estimate K and Σ1?
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Estimation of Unknown Parameters

� A simple thresholding estimator for estimating K :

K̂ = #



d̂i : d̂2

i > 2.01(log n)max
i

n∑

j=1

Xij , i = 1, ...,n





Proposition 1
The (a,b)th entry of matrix Σ1 takes the form

1
dadb

{ ∑

t∈{i,j}

∑

l 6∈{i,j}

σ2
tl va(l)vb(l) + σ2

ij [va(j)− va(i)][vb(j)− vb(i)]
}

� A plug-in estimator of Σ1 can be constructed

� va and da can be estimated by v̂a and d̂a, respectively

� Estimation of σ2
ab is a bit more complicated...
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An Iterative Algorithm for Estimating σ2
ab

� Recall σ2
ab = E [w2

ab]

� With K̂ , the naive estimator ŵ2
0,ab with

Ŵ0 = (ŵ0,ab) = X−∑K̂
k=1 d̂k v̂k v̂T

k is not accurate enough

� We propose an iterative estimation procedure
� Calculate the initial estimator Ŵ0

� With Ŵ0, update the estimator of dk as

d̃k =
( 1

d̂k
+

v̂T
k diag(Ŵ2

0)v̂k

d̂3
k

)−1

� Update the estimator of W as
Ŵ ≡ (ŵij) = X−∑K̂

k=1 d̃k v̂k v̂T
k . Estimate σ2

ab as σ̂2
ab = ŵ2

ab

� The above iterative procedure is motivated from high-order
asymptotic expansion of sample eigenvalue d̂k Jinchi Lv, USC Marshall – 25/52



Consistency of estimated parameters

Proposition 2
Under Conditions 1–3, we have P(K̂ = K ) = 1− o(1) and
n2θ‖Ŝ1 −Σ1‖2 = op(1)

Corollary 1
The asymptotic size of the rejection region

{T̂ij ≥ χ2
K̂ ,1−α}

is α and the asymptotic power is one as n→∞

� Note that the rejection region is pivotal to unknown parameters

Jinchi Lv, USC Marshall – 26/52



SIMPLE for Degree-Corrected Mixed Membership Models
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Degree Heterogeneity

� Now consider the more general scenario of degree
heterogeneity

H = ΘΠPΠTΘ

(Zhang, Levina and Zhu, 2014; Jin, Ke and Luo, 2017; ...)

� Θ = diag(θ1, · · · , θn) with θi > 0 is degree heterogeneity matrix

� The previous test Tij is no longer applicable because of degree
heterogeneity

� We build a new test using the ratio statistic (Jin, 2015)

Jinchi Lv, USC Marshall – 28/52



A Ratio Statistic

� Consider the following componentwise ratio to correct the
degree heterogeneity

Y (i , k) =
v̂k (i)
v̂1(i)

, 1 ≤ i ≤ n, 2 ≤ k ≤ K (1)

with 0/0 defined as 1

� Under the null hypothesis, due to the exchangeability of nodes i
and j

vk (i)
v1(i)

=
vk (j)
v1(j)

, 2 ≤ k ≤ K (2)

� We build our test by comparing Yi = (Y (i ,2), · · · ,Y (i ,K ))T with
Yj = (Y (j ,2), · · · ,Y (j ,K ))T
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An Ideal Test under Degree Heterogeneity

� For now assume that K is known

� We propose the test statistic to test H0 : πi = πj

Gij = (Yi − Yj)
TΣ−1

2 (Yi − Yj)

� Σ2 = cov(f) with f = (f2, · · · , fK )T and

fk =
eT

i Wvk

tk v1(i)
−

eT
j Wvk

tk v1(j)
− vk (i)eT

i Wv1

t1v2
1(i)

+
vk (j)eT

j Wv1

t1v2
1(j)

.

� Σ2 is asymptotic covariance matrix of Yi − Yj
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Conditions

� Condition 4. There exist some constants c2, c3 ∈ (0,1) and
constant c4 > 0 such that min1≤k≤K |Nk | ≥ c2n, θmax ≤ c4θmin,
and θ2

min ≥ n−c3

� Condition 5. Matrix P = (pkl) is positive definite, irreducible, and
has unit diagonal entries. Moreover
nmin1≤k≤K , t=i,j var(eT

t Wvk )→∞

� Condition 6. It holds that all the eigenvalues of nθ2
mincov(f) are

bounded away from 0 and∞

� Condition 4 requires that there are enough pure nodes from
each community and degree heterogeneity cannot be too
extreme

� Degree density measured by θ2
min (converging to zero)
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Asymptotic Distributions

Theorem 3

a). Under Conditions 1 and 4–6 and null hypothesis H0, it holds that

Gij
d−→ χ2

K−1 as n→∞

b). Under Conditions 1 and 4–6 and alternative hypothesis H1, if
λ2(πiπ

T
i + πjπ

T
j )� 1

nθ2
min

, then with asymptotic probability one,

Gij →∞
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Practical Test Statistic

� Ideal test statistic Gij is not directly applicable due to unknown
population quantities K and covariance matrix Σ2

� Similarly, consider practical test statistic Ĝij by replacing K and
Σ2 in Gij with K̂ and Ŝ2, respectively

Theorem 4
Assume that

P(K̂ = K ) = 1− o(1) and nθ2
min‖Ŝ2 −Σ2‖2 = op(1).

Then the same results as in Theorem 3 continue to hold for Ĝij under
the same conditions
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Estimation of Unknown Parameters

� We use the same thresholding estimator to estimate K

Proposition 3
The (a,b)th entry of matrix Σ2 takes the form

1
t2
1

{ n∑

l=1, l 6=j

σ2
il

[
t1va+1(l)
ta+1v1(i)

− va+1(i)v1(l)
v1(i)2

] [
t1vb+1(l)
tb+1v1(i)

− vb+1(i)v1(l)
v1(i)2

]

+
n∑

l=1, l 6=i

σ2
jl

[
t1va+1(l)
ta+1v1(j)

− va+1(j)v1(l)
v1(j)2

] [
t1vb+1(l)
tb+1v1(j)

− vb+1(j)v1(l)
v1(j)2

]

+ σ2
ij

[
t1va+1(j)
ta+1v1(i)

− va+1(i)v1(j)
v1(i)2 − t1va+1(i)

ta+1v1(j)
+

va+1(j)v1(i)
v1(j)2

]

×
[

t1vb+1(j)
tb+1v1(i)

− vb+1(i)v1(j)
v1(i)2 − t1vb+1(i)

tb+1v̂1(j)
+

vb+1(j)v1(i)
v1(j)2

]}
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Continued

� The expansion involves population parameter tk , whose
definition is too complicated to include here

� We have results showing that tk/dk → 1 and tk is indeed the
asymptotic mean of d̂k

� A plug-in estimator Ŝ2 can be constructed for estimating Σ2

� tk can be estimated by d̂k

� va can be estimated by v̂a

� σ2
ab can be estimated by one-step estimator σ̂2

ab

Proposition 4
Under Conditions 1 and 4–6, estimator Ŝ2 achieves the desired
estimation accuracy, i.e.,

nθ2
min‖Ŝ2 −Σ2‖2 = op(1)
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Rejection Region

Corollary 2
The asymptotic size of the rejection region

{Ĝij ≥ χ2
K̂−1,1−α}

is α and the asymptotic power is one as n→∞

� The above rejection region is pivotal

� Ĝij can be used with or without degree heterogeneity

� Due to the ratio T̂ij has better practical performance without
degree heterogeneity
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Numerical Examples
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Simulation Setting

� n ∈ {1500,3000} and K = 3 with significance level 0.05

� For mixed membership model, θ ∈ {0.2,0.3, · · · ,0.9}

� For degree corrected mixed membership model,
θ−1

i ∼ U[r−1,2r−1] with r2 ∈ {0.2,0.3, · · · ,0.9}

� Σ1 and Σ2 are estimated from data
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Simulation Results

identically distributed (i.i.d.) random variables from the uniform distribution on [1
r ,

2
r ] with

r ∈ (0, 1]. We consider different choices of r with r2 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We

can see that as parameter r2 increases, the signal becomes stronger.

4.1 Hypothesis testing with K known

Recall that our test statistics are designed to test the membership information for each

preselected pair of nodes (i, j) with 1 ≤ i 6= j ≤ n. To examine the empirical size of

our tests, we preselect (i, j) as two nodes with community membership probability vector

(0.2, 0.6, 0.2)T . To examine the empirical power of our tests, we preselect i as a node with

community membership probability vector (0.2, 0.6, 0.2)T and j as a node with community

membership probability vector (0, 1, 0)T . The nominal significance level is set to be 0.05

when calculating the critical points and the number of repetitions is chosen as 500.

We first generate simulated data from Model 1 introduced above and examine the em-

pirical size and power of test statistic T̂ij with estimated Σ1, but with the true value of K.

Then we consider Model 2 and examine the empirical size and power of test statistic Ĝij

with estimated Σ2 and the true value of K. The empirical size and power at different signal

levels are reported in Tables 1 and 2, corresponding to sample sizes n = 1500 and 3000,

respectively. We also plot the histogram of test statistic T̂ij for the case of θ = 0.9 and the

histogram of test statistic Ĝij for the case of r2 = 0.9 in Figure 1 under the null hypothesis.

As shown in Tables 1 and 2, the size and power of our tests converge quickly to the nominal

significance level 0.05 and the value of one, respectively, as the signal strength θ (related to

effective sample size) increases. As demonstrated in Figure 1, the empirical null distributions

are well described by our theoretical results. These results provide stark empirical evidence

supporting our theoretical findings, albeit complicated formulas (28) and (29).

Table 1: The size and power of test statistics T̂ij and Ĝij when the true value of K is used.
The nominal level is 0.05 and sample size is n = 1500.

Model 1

θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.058 0.046 0.06 0.05 0.05 0.058 0.036 0.05

Power 0.734 0.936 0.986 0.998 1 1 1 1

Model 2

r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.076 0.062 0.072 0.062 0.074 0.046 0.044 0.056

Power 0.426 0.562 0.696 0.77 0.89 0.93 0.952 0.976

4.2 Hypothesis testing with estimated K

We now examine the finite-sample performance of our test statistics T̂ij and estimated Ĝij

with estimated K and Σ1 and Σ2. The results in this section are used to check the impact of

15 Jinchi Lv, USC Marshall – 39/52



Continued

Table 2: The size and power of test statistics T̂ij and Ĝij when the true value of K is used.
The nominal level is 0.05 and sample size is n = 3000.

Model 1

θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

Model 2

r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.06 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.67 0.842 0.918 0.972 0.99 1 1 1

estimation of parameter K on the performance of our test statistics. The simulation settings

are identical to those in Section 4.1 except that we explore only the setting with sample size

n = 3000.

In Table 3, we report the proportion of correctly estimated K using the thresholding rule

(27) in both simulation settings of Models 1 and 2. It is seen that as the signal becomes

stronger (i.e., as θ or r2 increases), the estimation accuracy becomes higher. We also observe

that for relatively weak signals, the thresholding rule in (27) tends to underestimate K,

resulting in low estimation accuracy. We can see from the same table that over all repetitions,

K is either correctly estimated or underestimated. The critical values are constructed based

on these estimated values of K.

Table 3: Estimation accuracy of K using the thresholding rule (27)

θ or r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Model 1 P (K̂ = K) 1 1 1 1 1 1 1 1

P (K̂ ≤ K) 1 1 1 1 1 1 1 1

Model 2 P (K̂ = K) 0 0 0 1 1 1 1 1

P (K̂ ≤ K) 1 1 1 1 1 1 1 1

Table 4: The size and power of test statistics T̂ij and Ĝij when the estimated value of K is
used. The nominal level is 0.05 and sample size is n = 3000.

Model 1

θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

Model 2

r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.054 0.058 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.074 0.042 0.918 0.972 0.99 1 1 1

Same as in Section 4.1, we also examine the empirical size and power of our tests at

different levels of signal strength. The results are presented in Table 4. It is seen that the

16
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Continued
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Figure 1: Left: the histogram of test statistic T̂ij under null hypothesis with known K when

θ = 0.9. Blue curve is the density function of χ2
3. Right: the histogram of test statistic Ĝij

under null hypothesis with known K when r2 = 0.9. Blue curve is the density function of
χ2

2. Here sample size n = 3000.

performance of T̂ij is identical to that in Table 2, and the performance of Ĝij is the same as

in Table 2 for all r2 > 0.3. This is expected because of the nearly perfect estimation of K

as shown in Table 3 in these scenarios and/or the relatively strong signal strength. When

r2 ≤ 0.3, Ĝij has poor power because of the underestimated K (see Table 3). Nevertheless,

we observe the same trend as the signal strength increases, which provides support for our

theoretical results. We have also applied our tests to nodes with more distinct membership

probability vectors (0.2, 0.6, 0.2)T and (0, 0, 1)T , and the impact of estimated K is much

smaller. These additional simulation results are available upon request.

5 Real data applications

5.1 Zachary’s karate club data

We now apply our SIMPLE tests to the well-known Zachary’s karate club data which was in-

troduced initially in Zachary (1977). This data set is about the social network of a university

karate club with 34 members, which we treat as nodes in the network. If two members spent

much time together outside club meetings, then there is a link between these two nodes. It

was reported that at some point, those 34 members split into two communities, one led by

“Mr. Hi” and the other led by “John A.” Figure 2 illustrates the topology of this network as

shown in Girvan and Newman (2002). We can see that although two nodes can belong to the
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Table 2: The size and power of test statistics T̂ij and Ĝij when the true value of K is used.
The nominal level is 0.05 and sample size is n = 3000.

Model 1

θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

Model 2

r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.06 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.67 0.842 0.918 0.972 0.99 1 1 1

estimation of parameter K on the performance of our test statistics. The simulation settings

are identical to those in Section 4.1 except that we explore only the setting with sample size

n = 3000.

In Table 3, we report the proportion of correctly estimated K using the thresholding rule

(27) in both simulation settings of Models 1 and 2. It is seen that as the signal becomes

stronger (i.e., as θ or r2 increases), the estimation accuracy becomes higher. We also observe

that for relatively weak signals, the thresholding rule in (27) tends to underestimate K,

resulting in low estimation accuracy. We can see from the same table that over all repetitions,

K is either correctly estimated or underestimated. The critical values are constructed based

on these estimated values of K.

Table 3: Estimation accuracy of K using the thresholding rule (27)

θ or r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Model 1 P (K̂ = K) 1 1 1 1 1 1 1 1

P (K̂ ≤ K) 1 1 1 1 1 1 1 1

Model 2 P (K̂ = K) 0 0 0 1 1 1 1 1

P (K̂ ≤ K) 1 1 1 1 1 1 1 1

Table 4: The size and power of test statistics T̂ij and Ĝij when the estimated value of K is
used. The nominal level is 0.05 and sample size is n = 3000.

Model 1

θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

Model 2

r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.054 0.058 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.074 0.042 0.918 0.972 0.99 1 1 1

Same as in Section 4.1, we also examine the empirical size and power of our tests at

different levels of signal strength. The results are presented in Table 4. It is seen that the
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Table 2: The size and power of test statistics T̂ij and Ĝij when the true value of K is used.
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stronger (i.e., as θ or r2 increases), the estimation accuracy becomes higher. We also observe

that for relatively weak signals, the thresholding rule in (27) tends to underestimate K,

resulting in low estimation accuracy. We can see from the same table that over all repetitions,

K is either correctly estimated or underestimated. The critical values are constructed based

on these estimated values of K.

Table 3: Estimation accuracy of K using the thresholding rule (27)
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Model 1 P (K̂ = K) 1 1 1 1 1 1 1 1

P (K̂ ≤ K) 1 1 1 1 1 1 1 1

Model 2 P (K̂ = K) 0 0 0 1 1 1 1 1

P (K̂ ≤ K) 1 1 1 1 1 1 1 1

Table 4: The size and power of test statistics T̂ij and Ĝij when the estimated value of K is
used. The nominal level is 0.05 and sample size is n = 3000.

Model 1

θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

Model 2

r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.054 0.058 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.074 0.042 0.918 0.972 0.99 1 1 1

Same as in Section 4.1, we also examine the empirical size and power of our tests at

different levels of signal strength. The results are presented in Table 4. It is seen that the
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U.S. Political Data

� 105 political books sold online in 2004 (V. Krebs, source:
http://www.orgnet.com)

� Each book is represented by a node and links between nodes
represent frequent co-purchasing of books by the same buyers

� Books have been assigned manually three labels (conservative,
liberal, and neutral) by M. E. J. Newman

� Such labels may not be extremely accurate

� In fact, as argued in multiple papers (e.g., Koutsourelakis and
Eliassi-Rad (2008)), the mixed membership model may better
suit this data set
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� We will view the network as having K = 2 communities and treat
neutral ones as having mixed memberships

� Consider the set of 9 books (Jin et al., 2017)

other neutral books such as book 104, “The Future of Freedom,” which is consistent with the

results in Jin et al. (2017) who reported that these two books have very close membership

probability vectors. In summary, our SIMPLE method provides statistical significance for

the membership probability vectors estimated in Jin et al. (2017).

For a summary of our testing results, we also provide the multidimensional scaling map

of the nodes based on test statistics Ĝij on the left panel of Figure 3. The graph on the right

panel of Figure 3 is defined by the pairwise p-value matrix calculated from Ĝij . Specifically,

we first apply the hard-thresholding to the p-value matrix by setting all entries below 0.05

to 0. Denote by P̃ the resulting matrix. Then we plot the graph using the entries of P̃

as edge weights so that zeros correspond to unconnected pairs of nodes and larger entries

mean more closely connected nodes with thicker edges. The nodes in both graphs are color

coded according to Newman’s labels, with red representing “conservative,” blue representing

“liberal,” and orange representing “neutral.” It is seen that both graphs are mostly consistent

with Newman’s labels, with a few exceptions as partially discussed before. We also would

like to mention that the hard-thresholding step in p-value graph is to make the graph less

dense and easier to view. In fact, a small perturbation of the threshold does not change

much of the overall layout of the graph.

Table 7: Political books with labels

Title Label (by Newman) Node index

Empire Neutral 105

The Future of Freedom Neutral 104

Rise of the Vulcans Conservative 59

All the Shah’s Men Neutral 29

Bush at War Conservative 78

Plan of Attack Neutral 77

Power Plays Neutral 47

Meant To Be Neutral 19

The Bushes Conservative 50

6 Discussions

In this paper, we have asked a simple yet practical question of how to determine whether any

given pair of nodes in a network share the same profile of latent community memberships for

large-scale social, economic, text, or health network data with precise statistical significance.

Our work represents a first attempt to partially address such an important question. The

suggested method of statistical inference on membership profiles in large networks (SIMPLE)

provides theoretically justified network p-values in our context for both settings of mixed

20
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Table 8: P-values based on test statistics T̂ij . The labels provided by Newman are in the
parentheses.

Node No. 105(N) 104(N) 59(C) 29(N) 78(C) 77(N) 47(N) 19(N) 50(C)

105(N) 1.0000 0.6766 0.0298 0.3112 0.0248 0.0000 0.0574 0.1013 0.0449

104(N) 0.6766 1.0000 0.0261 0.2487 0.0204 0.0000 0.0643 0.1184 0.0407

59(C) 0.0298 0.0261 1.0000 0.1546 0.2129 0.0013 0.0326 0.0513 0.9249

29(N) 0.3112 0.2487 0.1546 1.0000 0.3206 0.0034 0.0236 0.0497 0.2121

78(C) 0.0248 0.0204 0.2129 0.3206 1.0000 0.0991 0.0042 0.0084 0.2574

77(N) 0.0000 0.0000 0.0013 0.0034 0.0991 1.0000 0.0000 0.0000 0.0035

47(N) 0.0574 0.0643 0.0326 0.0236 0.0042 0.0000 1.0000 0.9004 0.0834

19(N) 0.1013 0.1184 0.0513 0.0497 0.0084 0.0000 0.9004 1.0000 0.1113

50(C) 0.0449 0.0407 0.9249 0.2121 0.2574 0.0035 0.0834 0.1113 1.0000

Table 9: P-values based on test statistics Ĝij . The labels provided by Newman are in the
parentheses.

Node No. 105(N) 104(N) 59(C) 29(N) 78(C) 77(N) 47(N) 19(N) 50(C)

105(N) 1.0000 0.4403 0.1730 0.4563 0.8307 0.5361 0.0000 0.0000 0.1920

104(N) 0.4403 1.0000 0.0773 0.9721 0.3665 0.6972 0.0000 0.0000 0.1144

59(C) 0.1730 0.0773 1.0000 0.0792 0.1337 0.0885 0.0000 0.0000 0.8141

29(N) 0.4563 0.9721 0.0792 1.0000 0.4256 0.7624 0.0000 0.0000 0.1153

78(C) 0.8307 0.3665 0.1337 0.4256 1.0000 0.5402 0.0000 0.0000 0.1591

77(N) 0.5361 0.6972 0.0885 0.7624 0.5402 1.0000 0.0000 0.0000 0.1294

47(N) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.9778 0.0000

19(N) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9778 1.0000 0.0000

50(C) 0.1920 0.1144 0.8141 0.1153 0.1591 0.1294 0.0000 0.0000 1.0000
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Table 8: P-values based on test statistics T̂ij . The labels provided by Newman are in the
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59(C) 0.1730 0.0773 1.0000 0.0792 0.1337 0.0885 0.0000 0.0000 0.8141

29(N) 0.4563 0.9721 0.0792 1.0000 0.4256 0.7624 0.0000 0.0000 0.1153

78(C) 0.8307 0.3665 0.1337 0.4256 1.0000 0.5402 0.0000 0.0000 0.1591

77(N) 0.5361 0.6972 0.0885 0.7624 0.5402 1.0000 0.0000 0.0000 0.1294

47(N) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.9778 0.0000
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� Our results based on Ĝij mostly consistent with labels provided
by Newman and also consistent with those in Table 5 of Jin
(2015)

� Books 3 and 9 are both labeled as “conservative” by Newman
and our tests return large p-values between them

� These two books generally have much smaller p-values with
books labeled as “neutral”

� Book 5, which was labeled as “conservative” by Newman,
seems to be more similar to some neutral books
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� This phenomenon also observed in Jin et al. (2017), who
interpreted this as a result of having a liberal author

� Book 4 has relatively larger p-values with conservative books

� This book has even larger p-values with some other neutral
books such as book 2

� Consistent with results in Jin et al. (2017) who reported that
these two books have very close membership probability vectors

Jinchi Lv, USC Marshall – 49/52
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Figure 3: Left panel: the multidimensional scaling map of the nodes based on test statistics
Ĝij . Right panel: the connectivity graph generated from the thresholded p-valuate matrix

based on Ĝij . The nodes are color coded according to Newman’s labels, with red representing
“conservative,” blue representing “liberal,” and orange representing “neutral.”

membership models and degree-corrected mixed membership models. We have formally

shown that the two forms of SIMPLE test statistics can enjoy simple limiting distributions

under the null hypothesis and appealing power under the contiguous alternative hypothesis.

In particular, the tuning-free feature of SIMPLE makes it easy to use by practitioners. Our

newly suggested method and established theory lay the foundation for practical policies or

recommendations rooted on statistical inference for networks data with quantifiable impacts.

To illustrate the key ideas of SIMPLE and simplify the technical analysis, we have focused

our attention on the hypothesis testing problem for any preselected pair of nodes. It would be

interesting to study the problem when one of or each of the nodes is replaced by a selected set

of nodes. For example, in certain applications one may have some additional knowledge that

all the nodes within the selected set indeed share the same membership profile information.

It would also be interesting to quantify and control the statistical inference error rates when

one is interested in performing a set of hypothesis tests simultaneously for networks data.

Moreover, it would be interesting to investigate the hypothesis testing problem for more

general network models as well as for statistical models beyond network data such as for

large collections of text documents.

In addition, it would be interesting to connect the growing literature on sparse covariance

matrices and sparse precision matrices with that on network models. Such connections can

be made via modeling the graph Laplacian through a precision matrix or covariance matrix

(Brownlees et al., 2019). A natural question is then how well the network profiles can be

inferred from a panel of time series data. The same question also arises if the panel of time

series data admits a factor structure (Fan et al., 2008, 2013). These problems and extensions

are beyond the scope of the current paper and will be interesting topics for future research.
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Conclusions

� Suggested a tool for flexible network inference with precise
p-values on testing whether two nodes share same membership
profiles

� Generally applicable to networks with or without overlapping
communities allowing for degree heterogeneity

� Our SIMPLE framework pivotal to unknown parameters including
K

� Provided theoretical justifications of our tests (both size and
power)
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